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Abstract. There is a growing interest in the application of machine learning (ML) in Alzheimer’s disease (AD) research.
However, neuropsychiatric symptoms (NPS), frequent in subjects with AD, mild cognitive impairment (MCI), and other
related dementias have not been analyzed sufficiently using ML methods. To portray the landscape and potential of ML
research in AD and NPS studies, we present a comprehensive literature review of existing ML approaches and commonly
studied AD biomarkers. We conducted PubMed searches with keywords related to NPS, AD biomarkers, machine learning,
and cognition. We included a total of 38 articles in this review after excluding some irrelevant studies from the search
results and including 6 articles based on a snowball search from the bibliography of the relevant studies. We found a limited
number of studies focused on NPS with or without AD biomarkers. In contrast, multiple statistical machine learning and
deep learning methods have been used to build predictive diagnostic models using commonly known AD biomarkers. These
mainly included multiple imaging biomarkers, cognitive scores, and various omics biomarkers. Deep learning approaches
that combine these biomarkers or multi-modality datasets typically outperform single-modality datasets. We conclude ML
may be leveraged to untangle the complex relationships of NPS and AD biomarkers with cognition. This may potentially
help to predict the progression of MCI or dementia and develop more targeted early intervention approaches based on NPS.
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INTRODUCTION

Research on machine learning (ML) techniques for
dementia and Alzheimer’s disease (AD) is expand-
ing. Reviews and original studies have examined ML
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in the context of AD biomarkers derived from neu-
roimaging, cerebrospinal fluid (CSF), or plasma. For
example, a meta-analysis reported that biomarker-
based ML techniques might increase the sensitivity
and specificity of the AD diagnosis [1]. In a study
conducted in a community-based sample, ML mod-
els of plasma-derived AD biomarkers showed good
predictive accuracy in identifying persons at high risk
of dementia [2]. Multiple recent review articles exam-
ined the benefits of ML and various AD biomarkers
[1, 3–9].

In addition to biomarkers of AD, researchers have
examined potential risk factors for the development
of cognitive impairment in old age. One of these fac-
tors are neuropsychiatric symptoms (NPS) such as
depression, apathy, or anxiety, which are common
in older adults regardless of cognitive status. Studies
have shown that NPS are associated with an increased
risk of mild cognitive impairment (MCI) and demen-
tia [10]. We and others have shown that NPS are
associated with AD biomarkers in brain aging [11,
12]. However, to date, less is known as to whether ML
approaches are also useful in investigating the asso-
ciations between NPS and AD biomarkers in brain
aging.

ML algorithms, such as statistical ML and deep
learning methods, are effective at detecting com-
plex patterns in high-dimensional data. Deep learning
has even surpassed human performances in pattern
recognition in standard computer vision tasks such
as object recognition [13], image classification [14],
or complex strategic games [15, 16], just to name a
few. These techniques have been explored in med-
ical imaging research to process high dimensional
data such as magnetic resonance imaging (MRI),
positron emission tomography (PET), X-Ray, and
computed tomography (CT). Considering a broad
spectrum of medical research, ML techniques have
shown promising results and new directions, such as
in numerous medical imaging classification studies
[17, 18], cross tracer harmonization [19], cross-
modality translation [20], i.e., synthesizing artificial
PET scans from CT scans and medical image seg-
mentation tasks [21] which is otherwise laborious and
time-consuming for human experts.

In light of the growing amount of research on ML
in dementia and AD in recent years and considering
the importance of understanding the pathways linking
AD biomarkers and NPS with cognitive outcomes,
ML approaches may have tremendous potential to
interrogate NPS and AD biomarkers jointly in the
context of brain aging. Therefore, we conducted a

literature review to provide an overview of research
on ML in NPS (e.g., depression, anxiety, apathy),
commonly studied AD biomarkers (e.g., neuroimag-
ing biomarkers such as PET or MRI), and cognitive
outcomes (e.g., cognitive domains, cognitive status).

METHODS

To review existing literature on state-of-art ML
techniques that examined NPS, cognition, and AD
biomarkers, we conducted a PubMed search by
May 31, 2022, using the following search terms
that include relevant keywords related to NPS, AD
biomarkers, and cognition: (“machine learning”
[Title/Abstract] OR “deep learning”[Title/Abstract])
AND (“neuropsychiatric symptom*”[Title/Abstract]
OR “depressive disorder”[MeSH Terms] OR
“depression”[MeSH Terms] OR “anxiety”[MeSH
Terms] OR apathy[Title/Abstract/ OR agitation
[Title/Abstract] OR sleep[Title/Abstract] OR irri-
tability[Title/Abstract] OR delusion[Title/Abstract]
OR hallucination[Title/Abstract] OR eupho-
ria[Title/Abstract] OR disinhibition[Title/Abstract]
OR aberrant motor behavior[Title/Abstract] OR
eating[Title/Abstract]) AND (“Alzheimer’s disease
biomarker*[Title/Abstract] OR amyloid OR PiB-
PET[Title/Abstract] OR amyloid PET OR Tau PET
OR tau OR FDG-PET OR MRI OR amyloid beta
OR amyloid � OR A�42 OR A�42/ A�40 OR
phosphorylated tau OR p-tau OR total tau OR t-tau
OR t-tau/A�42 OR p-tau/A�42 OR cerebrospinal
fluid OR CSF OR neurofilament light chain OR
NfL[Title/Abstract]) AND (“cognition OR cognitive
impair* OR cognitive trajectories OR memory OR
attention OR executive function OR language OR
visuospatial OR subjective cognitive impairment
OR SCI OR mild cognitive impairment OR MCI OR
dementia OR Alzheimer’s disease).

We opted to include both review articles as well as
original research studies examining ML in the con-
text of NPS, AD biomarkers, and/or cognition. To
focus more on recent works, we excluded articles
published before 2017. Two authors (JS and MMRS)
independently screened the titles, abstracts, and full
text of all articles retrieved by the PubMed search
based on the pre-defined inclusion and exclusion cri-
teria. We screened the references of the retrieved
articles for further research that may be relevant to
our review but was not retrieved in the PubMed
search. Literature management and data extraction
were performed using Excel Software (Microsoft).
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Fig. 1. Flowchart of literature search.

We extracted the article’s title, variables/ measure-
ments and ML models used, information about the
dataset or study setting, study sample demographics,
and a summary of main findings.

RESULTS

The PubMed search yielded a total of 143 articles.
We excluded 77 articles published before 2017 and 42
that did not use any ML technique-based study anal-
ysis or did not include studies of NPS, or biomarkers
related to AD or dementia as defined in the NIA-AA
research framework [22]. We added 8 existing review

articles that analyzed research studies applying ML
methods to multiple AD biomarkers and added 6 arti-
cles through a snowball search from citations i.e.,
selecting relevant works from the article’s related
works retrieved from PubMed search. A total of 38
studies were finally included in this review. Figure 1
shows a flowchart of the literature search conducted
for this review.

In the results section, we first describe one study
that applied ML to examine NPS, AD biomarkers,
and cognitive outcomes. Then, we present four stud-
ies that used ML in the context of NPS and cognitive
impairment. Finally, the main part of the results sec-
tion focuses on studies that used ML to examine AD
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Table 1
Characteristics of reviewed literature on machine learning with NPS and AD biomarkers in context of brain aging

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Gill et al.
[23]

2020 ADNI Logistic
Model
Tree

Age: 55–90 y
Cognitive status: NC
and MCI at baseline

◦ Study predicted future cognitive status using baseline
clinical, neuropsychiatric, and structural MRI data.

◦ The machine learning model found that MBI total
scores had more prognostic utility than clinical or
volumetric variables for diagnostic prediction.

◦ The model identified 2–7 features that can optimally
classify participants.

ADNI, Alzheimer’s Disease Neuroimaging Initiative; NC, normal cognition; MCI, mild cognitive impairment; MRI, magnetic resonance
imaging; MBI, Mild behavioral impairment.

biomarkers in the context of brain aging. We first
provide an overview of existing literature reviews,
followed by a section on original studies. This section
is further subdivided based on the biomarker and ML
modalities used, i.e., MRI biomarkers, MRI biomark-
ers and statistical machine learning, MRI biomarkers
and deep learning, PET biomarkers, fMRI biomark-
ers, and combination of imaging and other modalities.

Machine learning: NPS, AD biomarkers, and
cognitive outcomes

From all the studies included in this review, only
one study [23] utilized ML to combine NPS and
AD biomarker information (please refer to Table 1).
The study was derived from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database and
demonstrated that NPS, in addition to neuroimaging-
based measures of brain morphology, improved the
prediction of MCI or dementia. The investigators
combined mild behavioral impairment (MBI) scores
with MRI and clinical features. A total of 235 fea-
tures were used. In the study, the features were first
ranked by evaluating the information gained from
each feature in the context of target classes (AD,
MCI, or healthy controls), and selected top features
were used for the AD classification. Two-class (i.e.,
AD vs. healthy controls) and three-class (i.e., AD vs.
MCI vs. healthy controls) decision tree based logis-
tic model tree classifiers were developed. The models
trained with MBI scores performed better than mod-
els trained on only clinical and MRI features. Among
the seven features required for the three-class classi-
fication, four were neuroimaging markers (i.e., left
hippocampus volume, cortical thickness and volume
of the entorhinal cortex, and cortical thickness of
the left middle temporal gyrus), and three were NPS

markers (i.e., MBI total score, impulse dyscontrol
score, and emotional dysregulation score).

Machine learning: NPS and cognitive
impairment

We identified four studies that examined the effec-
tiveness of ML techniques about NPS (see Table 2).

Two studies [24, 25] used random forest algo-
rithms, a combination of multiple decision trees. In
[24], the authors compared multiple ML models using
demographics, electronic health record, and NPS data
to predict conversion from MCI to dementia and con-
cluded that random forest models outperformed other
ML models. Subsequent analysis showed that global
NPS measures are critical in assessing the risk of
cognitive impairment and conversion to dementia. In
[25], the authors used electronic health record data
to predict the prevalence of NPS in dementia. It suc-
cessfully detected the presence of psychotic and/or
depressive symptoms in dementia patients.

Deep learning such as artificial neural networks
used in [26] showed improved results in distinguish-
ing AD dementia from MCI and AD dementia from
MCI and unimpaired controls compared to statis-
tical ML models (e.g., random forest). Study [27]
used a Long Short-Term Memory (LSTM) model to
detect agitation episodes in persons with dementia.
The study used multiple modalities of data collected
from sensors worn by participants, such as physi-
cal movement, heart and blood pressure rate, and
other pertinent physiological data collected over time.
LSTMs are techniques that can model long-term
dependencies and find patterns from sequences of
data points. While the evidence from this study was
not strong, it provides a first approach to analyzing
the risk of agitation in persons with dementia.
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Table 2
Characteristics of reviewed literature on machine learning with NPS in context of brain aging

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Mallo et
al. [24]

2019 Compostela
Aging
study

Random
Forest

78 CU, 50 MCI ◦ Prediction of conversion from MCI to dementia using
socio-demographic, basic health status, and NPS proxies
using machine learning model gave a 67% F1-score, and
88% accuracy.

◦ Total 9 ML classifiers were explored by authors, random
forest performed best.

◦ NPS proxies such as NPI-Q total severity score, NPI-Q
total stress score, and GDS-15 total score were found to
be most predictive of conversion, consistent with NPS
literature related to dementia.

Mar et al.
[25]

2020 Basque
Health
Service’s
database

Random
Forest

4,003 dementia
patients

◦ Machine learning models detected psychotic and
depressive symptoms in dementia patients

◦ Symptoms in psychotic cluster model had more
discriminatory power.

Palermo et
al. [27]

2021 UK
DRICR&T
Centre

LSTM 46 dementia
patients

◦ Study used data collected from various sensors at multiple
time points to detect agitation episodes.

. ◦ LSTM models can model long range dependencies and
were able to predict risk of agitation with 75% accuracy

Kang et al.
[26]

2019 Clinical
research
center for
dementia
of South
Korea

3-layer
ANN,
Logistic
Regression

N = 14,926:3217
NC, 6002 MCI,
5707 ADD

◦ Artificial Neural Network outperformed logistic
regression model in 2-class and 3-class classification.

◦ Neural net can predict NC, ADD, and MCI with 97%
accuracy using neuropsychological data

UK DRICR&T Centre, UK Dementia Research Institute Care Research and Technology Centre; LSTM, Long Short-Term Memory model;
ANN, Artificial Neural Network; CU, cognitively unimpaired; NC, normal cognition; MCI, mild cognitive impairment; ADD, Alzheimer’s
disease dementia; NPI-Q, Neuropsychiatric Inventory-Questionnaire; GDS-15, Geriatric Depression Scale-15 items; NPS, Neuropsychiatric
Symptoms.

Machine learning: AD biomarkers in the context
of brain aging

Overview of existing literature reviews on AD
biomarkers and machine learning

Several review articles provide an overview of
research studies involving ML techniques using AD
biomarkers. The research all observed a strong poten-
tial for leveraging these methods for AD diagnosis,
early prediction, drug development, and potential
inclusion in clinical workflows. In addition, the
importance of combining more than one modality
data to improve performance was well-recognized.

Four reviews [1, 3, 6, 9] summarized original
research works and architectures of deep learning
techniques that used imaging biomarkers such as MRI
and fluorodeoxyglucose (FDG)-PET in diagnostic
classification studies, i.e., to identify persons with AD
from cognitively unimpaired controls. Two reviews
[6, 9] highlighted the importance of multi-modal neu-
roimaging to improve the prediction performance.
Specifically, review [6] showed that the average accu-
racy of diagnostic classification increased from 86%

to 96% as investigators shifted from single-modality
to multi-modality data, i.e., MRI alone achieved
86%, FDG-PET alone showed 87% accuracy, MRI
combined with FDG-PET reached 90%, MRI, FDG-
PET and CSF together achieved 93%, and FDG-PET
with AV45-PET achieved 96% accuracy. In [9], con-
volutional neural network, a deep learning model
using multimodal PET images (FDG-PET and 18F-
florbetapir PET) showed better performance for AD
vs. normal cognition classification and the prediction
of MCI to AD conversion than using one modality
alone.

Analogous to combining multiple imaging modal-
ities, four reviews [1, 3, 5, 8] focused on works
that combine other modalities such as blood-based
biomarkers, cognitive tests, diffusion tensor imag-
ing, Tau-PET, cerebrospinal fluid biomarkers, and
other clinical data. Overall, these reviews demon-
strated that ML with novel biomarkers might increase
the sensitivity and specificity of AD diagnosis.
In particular, one review [1] reported studies that
use neuroinflammation biomarkers, [5, 8] focused
on biomarkers from language features analysis
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using modern natural language processing techniques
based on speech and electronic health record data,
respectively. Language features are important indica-
tors of cognitive state, as communication skills and
interpersonal behavior deteriorate in many neurode-
generative diseases. Clinical notes often consist of
rich clinical information to support the diagnosis.
Another growing area of research interest is the appli-
cation of ML to omics data, which contains genomics,
transcriptomics, proteomics, and metabolomics that
may reveal biomolecular markers associated with
AD [4]. Insights from omics data help understand
dynamic changes related to progression from an
unimpaired to disease stage, which may be partic-
ularly interesting in the context of brain aging and
AD [28]. Using genetic data of an individual, along
with other clinical information and lifestyle factors,
has been explored to develop targeted treatments and
therapies with personalized biomarker assessment.
The potential of ML lies in stratifying subjects based
on these numerous factors, including with clustering
algorithms [29]. ML algorithms can model high-
dimensional data better compared to conventional
statistical analyses, and this has enabled the AD diag-
nosis, prognosis, and early detection to be extended
to other omics such as epigenomics, metagenomics,
interactomics, and microbiomics [4].

A commonly known limitation of advanced ML
approaches is the lack of transparency of its inner
working, as highlighted in two reviews [5, 9]. Deep
learning architectures such as convolutional neu-
ral networks contain non-linear convolutional layers
which make it difficult to interpret the relative impor-
tance of features in the original data space. To address
the issue, [7] attempted to study the interpretability of
ML models. Specifically, the ML model - XGBoost
(eXtreme Gradient Boosting) was developed using
a combination of data modalities. The authors then
used Shapley Values, an approach inspired by game
theory principles, to explain the marginal contribu-
tion of features towards a prediction. The author
concluded gender/ sex and Apolipoprotein E (APOE)
ε4 features were the least decisive factors for hav-
ing an AD diagnosis, whereas cognitive test scores
showed the highest discriminative power.

Overview of original research on other AD
biomarkers and machine learning

We first presented original studies focusing on
developing ML using a single imaging modality for
the classification of individuals or modeling the non-
linear associations of imaging modality and cognitive

status of individuals based on standardized neu-
ropsychological testing such as Mini-Mental State
Examination (MMSE) scores. The research on multi-
modality is then summarized. The most used imaging
modalities were structural MRI (sMRI) and func-
tional MRI (fMRI), with a few studies focusing
on PET. The remaining ones used multiple imag-
ing modalities at once or a combination of imaging
and other modality information such as neuropsycho-
logical tests, demographic information such as age,
gender/ sex, and education, behavioral measures, the
mean reaction time of responses to target stimuli, clin-
ical features related to cognitive outcomes, APOE ε4,
Tau-PET, or speech features.

MRI biomarkers
MRI is one of the few non-invasive imaging

modalities that have been explored most for AD
biomarker analysis, mainly due to the availability of
large-size datasets like ADNI, Open Access Series
of Imaging Studies, Australian Imaging Biomarkers
and Lifestyle Study of Ageing (AIBL), or National
Alzheimer’s Coordinating Center (NACC). In this
review, we identified 11 original studies on ML and
MRI biomarkers in the context of brain aging. For an
overview of these studies, please refer to Table 3.

MRI biomarkers and statistical machine learning
Morphological changes in the brain related to neu-

rodegenerative disorders have been well detected
using sMRI and different ML techniques. Support
vector machine (SVM) is an effective method that
transforms data in high dimensional space and finds
a hyperplane that best differentiates samples in data
distributions to their class labels. Two studies [30, 31]
used an SVM model trained on MRI features to dis-
tinguish between clinical groups. Precisely, the model
developed by one study [30] differentiates early AD
from old age depression, and the results highlight sub-
tle structural changes in the latter. Similar to that,
study [31] built an SVM model on features extracted
using a PCA (Principal Component Analysis) and
FDR (Fisher Discriminant Ratio) method on the voxel
space from MRI features for identifying biomarkers
in persons with MCI that convert to AD. AD patients
have heterogeneous clinical characteristics. Training
a single SVM model on a subset of these characteris-
tics, manually selected as input, might produce biased
results. Hence, as a successive effort [32] ensembles
multiple SVM models by majority voting with differ-
ent subsets of features, but always including MMSE
for classifying persons with normal cognition, MCI,
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Table 3
Characteristics of reviewed literature on machine learning and MRI biomarkers

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Klöppel et
al. [30]

2018 Department of
Geriatric
Psychiatry,
Mannheim,
Germany,
AIBL, ADNI

SVM 28 AD, 37 moderate
or severe depression

◦ SVM based predictive model was able to
differentiate between clinically challenging
scenarios such as subjects with depression and
early dementia due to AD.

◦ Although not useful for diagnostic decisions,
authors suggest such analysis for individual
analysis.

Salvatore
et al. [31]

2015 ADNI PCA, FDR,
SVM

162 NC, 137 AD, 76
MCI who converted to
AD within 18 months
and 134 MCI who did
not convert to AD
within 18 months
(MCInc)

◦ Machine learning model highlighted similar
atrophy patterns in AD and MCI patients
converting to AD, suggesting MRI detectability of
structural biomarkers at early stages.

Sørensen
et al. [32]

2018 ADNI Ensemble
SVM

100 NC, 100 MCI,
100 MCI-converters,
100 AD

◦ Ensemble classifiers are more robust and accurate
than single classifiers and useful in multi-class
classification.

Cao et al.
[33]

2017 ADNI Multiple
kernel
learning,
k-NN,
manifold
learning

229 NC, 229 stable
MCI, 168 progressive
MCI, 192 AD

◦ Nonlinear lower representation of data using multi
kernel marginal fisher analysis.

◦ Study shows using manifold learning can achieve
better data representation for over sampling and
dimensionality reduction.

◦ Using a k-nearest neighbor classifier improves
results compared to SVM approaches.

Pang et al.
[35]

2019 ADNI Semi-
supervised
deep
Autoencoder

135 subjects ◦ Deep learning approaches show effective
hippocampus segmentation without the need for
registration which is beneficial for AD diagnosis
and assessment.

Chen et al.
[36]

2021 Indira Gandhi
Medical
College

CNN 18 AD, 18 HC ◦ CNN based methods outperform FCNN and SVM
based techniques in terms of segmentation effects.

◦ CNN had half the operation time in comparison to
SVM and FCNN and better segmentation
performance.

◦ Important indicators in AD imaging such as
reduction in gray matter volume and cerebral
cortex were accurately segmented.

Qiao et al.
[37]

ADNI,
MIRIAD

CNN 368 NC, 298 AD, 446
MCI

◦ The study uses contrastive loss layers in their
CNN based on group categories comparative and
subject MMSE ranking.

◦ This help network learns better similarities of
same group and subtle differences among AD, NC
and MCI.

◦ The CNN model takes pairs of MRIs as input.
Ambastha
et al. [38]

2017 ADNI Ensemble of
CNNs,
AdaBoost

100 HC, 100 AD ◦ Deep learning to analyze neuroanatomical
characterization of AD.

◦ Developed a CNN that takes dual region inputs
from MRIs that contribute towards AD.

◦ The model found regional pairs that degenerate
together and explain behavioral changes in AD.

Bhagwat et
al. [39]

2019 ADNI Anatomically
partitioned
artificial
neural network

377 NC, late MCI
475, 75 significant
memory concern, 149
late MCI, 278 AD

◦ Study showed the effectiveness of neural network
to predict cognitive scores at baseline and 1 year
using high dimensional structural MRI data such
as hippocampal segmentations and cortical
parcellations.

(Continued)
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Table 3
(Continued)

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Qiao et al.
[40]

2022 ADNI 3D CNN AD, MCI and NC
subjects at 4 time
points

◦ Since MMSE values have ordinal relationship,
authors transformed regression of MMSE into
multi-class classification with multiple
subnetworks.

◦ Model better predicts MMSE scores at various
time points compared to baseline and better
highlight subtle changes in subjects.

Cui et al.
[41]

2019 ADNI CNN, RNN 198 AD, 167
progressive MCI, 236
stable MCI, 229 NC

◦ A combination of 2 deep learning models; CNNs
that can learn spatial features, as input to RNN
which can model longitudinal features;
outperforms existing methods for AD diagnosis.

◦ The framework also handles for missing data.
◦ Overall focus on longitudinal analysis of AD using

deep learning.

AIBL, Australian Imaging Biomarkers and Lifestyle Study of Ageing; ADNI, Alzheimer’s Disease Neuroimaging Initiative; SVM, support
vector machine; AD, Alzheimer’s disease; PCA, principal component analysis; FDR, Fisher Discriminant Ratio; NC, normal cognition; MCI,
mild cognitive impairment; MRI, magnetic resonance imaging; k-NN, k-nearest neighbor; (F)CNN, (fully) convolutional neural networks;
HC, healthy controls; MIRIAD, Minimal Interval Resonance Imaging in Alzheimer’s Disease; MMSE, Mini Mental Status exam; RNN,
recurrent neural network.

AD, and MCI that converted to AD at follow-up.
Study [33] showed that SVM results could be outper-
formed by using manifold learning as dimensionality
reduction for AD vs. MCI and multi-class classi-
fication datasets. The study applied a multi-kernel
learning framework that allows learning an optimal
combination of base kernels and used a k-nearest
neighbor model for classification. It also investigated
kernel weights for regions of interest (ROI) identifi-
cation and external validation.

MRI biomarkers and deep learning
[34] demonstrated the superior performance of

convolutional neural networks (CNNs) compared to
statistical ML methods for AD diagnosis. Deep neural
networks are particularly effective at image classifi-
cation and segmentation of relevant objects in images
or regions of interest (ROI) in medical scans, e.g., [35,
36]. One research [37] used a 3-dimensional convo-
lutional neural network consisting of 4 convolutional
layers and two dense layers along with a contrastive
loss function for a diagnosis classification, i.e., per-
sons with AD versus normal controls versus MCI.
Study [38] developed an ensemble of convolutional
neural networks that take in dual region inputs to
find cliques of brain regions that degenerate with
AD progression for atrophy-based neuroanatomical
characterization.

About longitudinal analyses, tracking patterns in
structural brain changes related to AD progression

are crucial to understanding the pathophysiology of
AD. To identify relationships between morpholog-
ical patterns in imaging scans and cognitive scores
such as MMSE, two studies [39, 40] used convo-
lutional neural network-based models. Study [39]
adopted a unique approach of anatomically parti-
tioned artificial neural network which combines two
high-dimensional structural MRI measures, i.e., hip-
pocampal segmentations and cortical thickness, as
input to the model. Study [40] used whole MRI scans
at baseline and future time points by transforming
regression of MMSE into multi-classification with
discrete MMSE values. In contrast, study [41] con-
structed a combination of 3-dimensional CNN and
recurrent neural network (RNN) architectures using
T1-MRI scans at multiple time points. The features
extracted from each MRI scan are then input to cas-
caded bi-directional gated recurrent (a type of RNN)
units to perform classification between persons with
AD, MCI, and healthy controls. Since the deep learn-
ing architecture used in this study can track AD
progression across longitudinal MRI scans, it per-
forms better than single time point MRI scan-based
models.

PET biomarkers
PET based imaging measurements have been used

to define AD in its preclinical stage and allow inves-
tigation of progression of AD [22]. Here we included
three studies on ML and PET biomarkers in the
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Table 4
Characteristics of reviewed literature on machine learning and PET biomarkers

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Son et al.
[42]

2019 Florbetaben
Imaging in
Alzheimer’s
and Related
Neurological
Conditions
(FLORIAN)

2D and 3D
CNNs

85 NC, 233 MCI, and
112 AD

◦ Deep learning models make diagnostic predictions
differently from human expert readers of PET scans
which is complementary in nature.

◦ Study showed deep models outperforming humans in
case of equivocal (visually ambiguous) scans and 2D
CNNs performing better than 3D CNNs.

Choi et al.
[45]

2020 ADNI, UK PD
Brain Bank

3D CNN 243 AD, 393 NC, 666
MCI, and 62 PD
subjects with
dementia

◦ Developed a deep neural network that can capture
cognitive signatures of multiple neurodegenerative
diseases; here AD, MCI and PD and analyze their
variations.

◦ Also showed benefits of transfer learning in case of
small datasets.

Whittington
et al. [43]

2021 ADNI Linear
regression

NC, MCI, and
subjects with
dementia for various
studies

◦ Fitting a linear regression at the voxel space on a
chronological dataset, authors propose a new
algorithm for local and global longitudinal tau
quantification.

◦ Method accounts for more complex deposition of tau
than of amyloid.

CNN, convolutional neural networks; NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; PD, Parkinson’s
disease; PET, Positron emission tomography; ADNI, Alzheimer’s Disease Neuroimaging Initiative.

context of brain aging (please refer to Table 4 for
an overview). Study [42] developed a convolutional
neural network model to predict disease progression
in cases of visually ambiguous PET scans and pro-
vided reassurance in clinical diagnosis and prognosis
assessment. In contrast, research [43] used a simple
linear regression method to quantify tau in Tau-PET
scans, unlike standardized uptake value ratio (SUVR)
approaches. The proposed algorithm TauIQ accounts
for global and local deposition of tau and uses the
existing method AmyloidIQ to derive the time of
accumulation from the Tau-PET scan. It uses linear
regression to generate canonical images, which are
input to the TauIQ algorithm with MRI scan to create
local and global tau depositions.

Neuroimaging based studies often face the chal-
lenge of scarcity of labeled data to train supervised
ML algorithms [22]. This is particularly true for
PET studies due to the high cost and accessibility of
PET imaging. Hence some researchers have explored
transfer learning, a common technique in the ML
field to transfer knowledge from one learning task
to another learning tasks [44]. Study [45] built a
custom 4-layer 3-dimensional convolutional neural
network trained on FDG-PET images of persons with
AD and normal cognition, and then tested this model
for AD versus MCI classification, and also MCI ver-
sus Parkinson’s disease classification. Such transfer

learning techniques are effective in diagnosis tasks
when the available dataset has limited image samples
but can be fine-tuned or extended to other tasks.

fMRI biomarkers
In our review, we included three studies on ML and

fMRI biomarkers in the context of brain aging (please
refer to Table 5 for an overview). Studies that used ML
on fMRI data either focused on classifying persons
based on their functional connectivity patterns or on
differentiating between brain states using functional
networks of the brain. Much similar to regressing
MMSE scores on sMRI scans of individuals, study
[34] investigated the relationship between fMRI and
MMSE scores using different non-linear models.

Since ML based approaches can help in analyz-
ing morphological patterns in the brain to understand
the phenomenon under inspection, researchers have
explored resting state fMRI (rs-fMRI). In two stud-
ies [46, 47], the authors combined rs-fMRIs with
MMSE scores for AD classification. Study [46] used
rs-fMRIs to calculate group-level independent com-
ponent analysis (ICA) maps, and to extract subject
specific time courses and spatial ICA maps. 3D
ICA maps were fed to a convolutional neural net-
work model for classification, whereas time course
functional connectivity maps were used for MMSE
regression. The overall framework performed the
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Table 5
Characteristics of reviewed literature on machine learning and fMRI biomarkers

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Amini et
al. [34]

2021 ADNI KNN, SVM,
DT, LDA, RF,
and CNN

fMRI of 675
patients

◦ Deep learning approaches such as CNN significantly
outperform traditional methods.

◦ Study uses a multi-task feature extraction method that
will adjust weights in input layers as per similarities
and differences of tasks.

Duc et
al. [46]

2020 Chosun
University
National
Dementia
Research
Center, South
Korea

3D CNN,
SVR, linear
regression,
ensemble
regression

198 NC and 133
AD

◦ A framework that can jointly perform AD diagnosis
with a deep learning model and predict MMSE scores
using pre-processed features.

◦ Results show use case of functional brain features
with machine learning models for both tasks.

Jin et al.
[47]

2020 From 6
different
scanners of
hospitals in
China, and
ADNI

SVM, elastic
regression
models

215 HC, 221 MCI,
and 252 AD

◦ Using a machine learning framework, authors
confirmed that AD is associated with
hypoconnectivity and aberrant brain activity in DMN.

◦ Machine learning models can identify patterns of
functional dysconnectivity aiding in diagnostic status
and clinical score prediction.

ADNI, Alzheimer’s Disease Neuroimaging Initiative; KNN, k-nearest neighbors; SVM, support vector machine; SVR, support vector
regression; DT, decision tree; LDA, Linear discriminant analysis; RF, random forest; CNN, convolutional neural networks; fMRI, functional
magnetic resonance imaging; NC, normal cognition; AD, Alzheimer’s disease; MMSE, Mini Mental Status exam; HC, healthy controls;
DMN, default-mode network.

classification of AD versus healthy controls and pre-
dicted MMSE scores using rs-fMRI data. In [47], the
researchers focused on learning about aberrant brain
activity and dysfunction of the whole-brain networks
in AD. The study used SVM and ElasticNet regres-
sion model, which is a regularized linear regression
model combining multiple penalties as loss func-
tions, to identify the key fMRI features and predict
cognitive status, and cognitive test scores based on
connectivity data.

Combination of imaging and other modalities
In addition to individual imaging modalities dis-

cussed above, researchers used various other features
such as clinical information, demographic variables,
CSF biomarkers, behavioral measures, or MMSE
scores for diagnosing AD. Few studies utilized fea-
tures from resting state EEG and audio. We detected 8
studies on ML and multiple biomarkers in the context
of brain aging that we included in this review (please
refer to Table 6).

It is common to derive labels for imaging scans of
individuals based on their cognitive scores, such as
MMSE, and use them for classification or regression
tasks. While many investigators used a combination
of MMSE and MRI or fMRI in their models [32, 34,
39, 40, 46, 47], others have utilized [32, 48, 49] MRI,
age, sex, and MMSE scores from the ADNI dataset

for diagnosing AD. In addition, study [48] used addi-
tional datasets such as AIBL, Framingham Heart
Study (FHS), and NACC for testing. The authors
trained a fully connected neural network to gener-
ate disease probability maps for AD versus healthy
controls classification. These maps from 200 spe-
cific locations augmented with age, sex, and MMSE
scores were used to classify AD versus healthy con-
trols using MLP. The model-predicted regions of high
AD risk overlapped with the segmented areas that
indicated high localized deposition of amyloid-� and
tau. Frölich [50] showed that a particular combina-
tion of modalities could help increase the predictive
power of ML models compared to single predictor
models. Specifically, hippocampal volume and total
tau were most significant in identifying MCI patients
progressing to AD dementia and adding biomarkers
to the SVM model improved statistical measures that
could be of clinical utility, such as selecting patients
for trials. Instead of using MMSE scores in cognitive
status classification, study [49] segregated training
groups based on cognitive profiles and trained three
different classifiers including decision trees, random
forest and SVM with improved accuracy compar-
ing to benchmark approaches. The authors claimed
to be independent of MMSE scores, but class seg-
regations were performed based on MMSE scores.
Study [51] constructed the analysis of brain atrophy
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Table 6
Characteristics of reviewed literature on machine learning and multiple biomarkers

Author/s Year Dataset Machine
Learning
Model

Participant
Information

Key findings

Qiu et al.
[48]

2020 ADNI,
AIBL,
FHS,
NACC

FCN + MLP 229 NC and 188 AD
from ADNI, 320 NC
and 62 AD from
AIBL, 73 NC and 29
AD from FHS, and
356 NC and 209 AD
from NACC

◦ Adding age, gender and MMSE information to deep
learning model greatly increased performance (acc:
0.968 ± pared to MRI data alone (acc: 0.834 ± 0.020)

Donnelly-
Kehoe et
al. [49]

2018 ADNI Decision trees
+ (random
forests, SVM,
AdaBoost)

400 (100 each HC,
MCI, converters MCI,
AD)

◦ Random forest performs best compared to other
machine learning models.

◦ Morphological features did not allow machine
learning model to reach good accuracy compared to
MMSE alone.

◦ And hence study performs a cognitive profile
dependent analysis.

Liu et al.
[51]

2020 ADNI Group Guided
Fused
Laplacian
Sparse Group
Lasso

AD, MCI, and NC at
various time points

◦ Study proposed a group guided fused Laplacian that
can calculate overall graphs among tasks and ROIs
and a graph Laplacian to capture dependent structure
at time points.

◦ A framework that benefits from multi-modality,
multitask and longitudinal analysis shows
significance.

Bhagwat et
al. [52]

2018 ADNI1,
ADNI2,
ADNIGO,
AIBL

Siamese
Neural
Network

LMCI, EMCI, MCI,
SMC, NC, and AD

◦ Follow up clinical information helps improve
multi-modal performance at baseline.

◦ However, 2-timepoint input offers best performance.
◦ Overall approach can help identify stable and

declining trajectories without strong thresholds
(4-point change, time window, etc.)

Beltrán et
al. [53]

2020 ADNI Random
forests,
gradient
boosting

NC, early MCI, stable
MCI, and AD

◦ Comparison of expensive vs inexpensive biomarkers
with machine learning models shows a cost-effective
way to screen patients that might need additional
testing.

Delmotte
et al. [54]

2021 Neurology
Memory
Clinic
UZ/KU
Leuven

Linear Mixed
effects model

228 subjects into
various ATN classes

◦ A linear mixed effects model to explore effects of
continuous CSF biomarkers on time course cognitive
scores (MMSE).

◦ Certain classes such as A–/T–/N+ shows a
pronounced deterioration of MMSE over the 3-year
follow-up period.

Frölich et
al. [50]

2017 Dementia
Compe-
tence
Network

SVM 115 MCI (28
converted to AD, 87
remained stable, and
17 converted to
non-AD dementia)

◦ Using an SVM model with linear kernel and different
combinations of 9 predictor variables authors analyze
if adding multi-modality helps in prediction of MCI
to AD progression.

◦ Hippocampal volume and total tau had best single
predictor performance.

◦ Adding other variables helped improve specificity of
model at a fixed sensitivity value.

ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging Biomarkers and Lifestyle Study of Ageing; FHS, Framing-
ham Heart Study; NACC, National Alzheimer’s Coordinating Center; FCN, fully convolution network; MLP, Multilayer Perceptron; NC,
normal cognition; AD, Alzheimer’s disease; MCI, mild cognitive impairment; SMC, significant memory concern; LMCI, late MCI; EMCI,
early MCI; MMSE, Mini Mental Status exam; MRI, magnetic resonance imaging; HC, healthy controls; ROI, regions of interest; CNN, con-
volutional neural networks; VGG, Visual Geometry Group; XGBoost, (eXtreme Gradient Boosting); ATN; amyloid/tau/neurodegeneration;
SVM, support vector machine.

and AD progression as a multi-task learning prob-
lem, where cognitive scores were regressed on MRI
features extracted at various time points using group-
based regularization and hence exploited correlations
between different ROIs and their relative importance.

This study performed experiments on MRI and PET
as a single modality and also using a combination
of MRI, PET, CSF, and demographic information
where each modality is considered as a group in group
guided fused Laplacian regularization.
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Similarly, study [52] proposed to model long-
term symptom trajectories using multi-modal data.
Their framework used a hierarchical clustering algo-
rithm to cluster symptom trajectories using clinical
assessments. They grouped subjects that have simi-
lar clinical progression by assigning them trajectory
labels and used them as classification labels. They
used a longitudinal Siamese neural network for
predictive modeling symptom trajectories using lon-
gitudinal data with multiple modalities such as
clinical scores, MMSE, APOE ε4 status, Alzheimer’s
Disease Assessment Scale-Cognitive Subscale, age,
and specific MR measures. Study [53] showed that
using ML approaches such as random forests and
gradient boosting in combination with relatively
inexpensive and non-invasive biomarkers such as
those available from blood samples is promising,
i.e., predictive models can perform almost as well
as models built using rather expensive biomark-
ers such as MRI and PET or combination of all.
Moreover, using a model built on blood tests can
provide initial risk estimation of MCI patients con-
verting to AD and thus identify patients that may
benefit from additional testing. For example, [54]
used a simple linear mixed effects model adjusted
for age and sex trained on CSF biomarkers for
amyloid/tau/neurodegeneration (ATN) classification.
Cognitive performance (MMSE) scores were col-
lected over three years, and patients were stratified
into ATN classes based on CSF measures, PET, and
MRI measurements, along with neuropsychological
tests. The classification model showed prognostic
value in predicting the course of cognitive decline.

DISCUSSION

In this review, we provide an overview of research
on ML utilizing NPS and AD biomarkers informa-
tion in the context of brain aging. To the best of our
knowledge, only one study examined ML using both
NPS and AD biomarkers [22], and only four studies
examined ML using NPS in the context of brain aging
[24–27]. Most ML studies included in this review
focused on AD biomarkers, particularly neuroimag-
ing biomarkers such as MRI, PET, and fMRI.

In general, the studies included in this review
provide convincing evidence for the potential appli-
cation of ML in the context of brain aging. Statistical
ML models such as SVM, Random Forests, Lin-
ear Regression, and Boosting techniques [24, 30,
38, 43] have shown promising results with existing

AD biomarkers regarding a wide range of clinical
utilities and observations, e.g., to correctly classify
individuals into having MCI or AD or being cog-
nitively unimpaired. Since these methods allow for
better introspection into model predictions and work-
ing compared to complex deep learning models,
they are more commonly used in research. Unfor-
tunately, research on ML utilizing both NPS and
AD biomarkers in the context of brain aging is min-
imal at this point but will likely increase in the
near future. Based on the results of this review, we
believe that ML methods will prove to help exam-
ine the complex and non-linear associations between
NPS and AD biomarkers in predicting the cogni-
tive status and trajectories of older adults. Thus, ML
techniques may ultimately be used to identify per-
sons at risk for progression to MCI or dementia at
an early stage, i.e., when they are still cognitively
unimpaired, based on information about the neu-
ropsychiatric and AD biomarker status of a person.
This may significantly impact the potential delay of
slowing cognitive impairment, for example, through
early initiation of individually targeted therapeutic
approaches. We also hypothesize that ML consider-
ing both NPS and AD biomarker information will be
more efficient and successful in correctly classifying
individuals as compared to ML based on either NPS
or AD biomarkers alone, as also implicated by the
promising preliminary results of one study included
in this review [23]. However, it must be noted that ML
methods rely on pre-processed features from domain
experts, which limits the discovery of novel biomark-
ers and may not be effective in the case of very
high-dimensional datasets such as raw neuroimaging
modalities. Besides, given sufficient data, ML meth-
ods robustly model nonlinearities, but it is difficult to
examine the complexities such nonlinear mappings.
Shapley values [7] are helpful in seeing the “over-
all” effects and can aide in interpretation of model
predictions.

Similarly, deep learning-based studies included in
this review showed improved results in diagnostic
classification, segmentation, and biomarker discov-
ery in specific scenarios [26, 35, 50]. With more
datasets being collected and made publicly available,
it is possible to train these deep neural networks,
investigate raw imaging and other modality datasets,
and potentially discover new biomarkers that were
previously unknown. Nevertheless, deep learning
also comes with an additional overhead of limited
interpretability of its working, computation cost, and
huge dataset requirement to train on. Therefore, tech-
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niques such as transfer learning as shown in [45],
few-shot learning [55], and knowledge distillation
[56] remain active areas of research to mitigate these
limitations. Our review should be interpreted by con-
sidering its strengths and limitations. The strengths
of the review are that we applied a rigorous search
strategy and that our team has expertise in machine
learning, mathematical statistics, and NPS and AD
biomarkers from a clinical and research perspective.
Two authors did the literature search and screening
process independently, thus ensuring higher method-
ological quality. Furthermore, to the best of our
knowledge, no current review provides an overview
of research on ML considering NPS and AD biomark-
ers in the context of brain aging. Limitations of our
review pertain to the high heterogeneity of stud-
ies included, particularly those focusing on ML and
AD biomarkers, which makes it challenging to sum-
marize and comprehensively interpret the findings.
Furthermore, only one study could be included in
this review that examined ML in the context of brain
aging by considering both NPS and AD biomarker
information. More research is thus needed that uti-
lizes the strengths of ML to untangle the relationships
between NPS and AD biomarkers in predicting cogni-
tive trajectories in older adults. In the past, our group
has proposed four possible mechanisms linking NPS
and AD pathology in predicting cognitive outcomes:
etiologic, shared risk factor/ confounding, reverse
causality, or interaction pathways [57]. ML may help
better explore these hypothetical mechanisms in the
future and clarify which mechanisms are empirically
valid. Another limitation is that we did not system-
atically examine the quality of included studies or
compare them based on quality rating. However, this
was not feasible due to the significant heterogeneity
of included studies regarding methodology.

In our review, we only focused on ML, NPS,
and commonly used AD neuroimaging biomark-
ers, i.e., MRI biomarkers, PET biomarkers, fMRI
biomarkers, and combination of imaging and other
modalities. However, there are also several studies
that examine ML and retinal imaging biomarkers in
AD. For example, investigators of one study [58] pro-
posed a bilateral deep learning network that fuses
features from four retinal photographs along with
demographic information to detect patients with AD
dementia. Whereas another study [59] developed a
ML framework to classify healthy individuals from
patients with AD using retinal vasculature features.
The proposed framework has a modular pipeline that
performs image quality control, segmenting vessel

maps from fundus images using a deep learning
model and using a t-test feature selection process
from those maps to train a binary SVM classifier.
Authors also generated saliency maps to investigate
the contributions of relevant parts of vascular sys-
tem for machine learning prediction. A ML based
model found that retinal thickness was affected
by AD severity [60]. Optical coherence tomogra-
phy measurements are inexpensive and non-invasive
compared to MRI, CSF, and PET. An XGBoost
algorithm was used to build high accuracy diag-
nostic model for AD using eight optical coherence
tomography features. Furthermore, ML has also been
successfully used to investigate depression and other
NPS in diseases other than AD, such as hyperten-
sion [61], major depressive disorder [62], cancer [63],
cardiovascular disease [64], and general life [65].

In conclusion, this review shows that studies on
ML in the context of brain aging have mainly focused
on AD biomarkers. To date, only a little research is
available on ML NPS and AD biomarkers. However,
given the clinical significance of NPS in the context of
brain aging, we argue that more studies on ML, NPS,
and AD biomarkers need to be conducted. ML is a
promising tool to identify persons at risk for progres-
sion to MCI or dementia. NPS is also an independent
risk factor of MCI or dementia. Therefore, the predic-
tion model of MCI or dementia can be substantially
improved by using ML in samples enriched by NPS.
This may have implication for future AD prevention
trials that target samples enriched with NPS.

ACKNOWLEDGMENTS

The authors have no acknowledgments to report.

FUNDING

Support for this research was provided by National
Institute on Aging grant R01 AG057708. This project
was also supported by the Barrow Neurological Foun-
dation.

CONFLICT OF INTEREST

Walter K. Kremers receives research support from
the NIH. Maria Vassilaki has received research fund-
ing in the past from F. Hoffmann-La Roche Ltd and
Biogen and consulted for F. Hoffmann-La Roche Ltd;
currently she receives research funding from NIH,
and she has equity ownership in Abbott Laboratories,



1144 J. Shah et al. / Neuropsychiatric Symptoms and Commonly Used Biomarkers of Alzheimer’s Disease

Johnson and Johnson, Medtronic, AbbVie, Merck
and Amgen. Yonas E. Geda receives funding from
NIH and Barrow Neurological Foundation.

Yonas E. Geda and Maria Vassilaki are Editorial
Board Members of this journal but were not involved
in the peer-review process nor had access to any infor-
mation regarding its peer-review.

REFERENCES

[1] Chang C-H, Lin C-H, Lane H-Y (2021) Machine learn-
ing and novel biomarkers for the diagnosis of Alzheimer’s
disease. Int J Mol Sci 22, 2761.

[2] Lin H, Himali JJ, Satizabal CL, Beiser AS, Levy D, Ben-
jamin EJ, Gonzales MM, Ghosh S, Vasan RS, Seshadri
S, McGrath ER (2022) Identifying blood biomarkers for
dementia using machine learning methods in the Framing-
ham Heart Study. Cells 11, 1506.

[3] Gao S, Lima D (2022) A review of the application of deep
learning in the detection of Alzheimer’s disease. Int J Cogn
Comput Eng 3, 1-8.

[4] Tan MS, Cheah P-L, Chin A-V, Looi L-M, Chang S-W
(2021) A review on omics-based biomarkers discovery for
Alzheimer’s disease from the bioinformatics perspectives:
Statistical approach vs machine learning approach. Comput
Biol Med 139, 104947.

[5] Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saf-
fari A, Mead R, Hautbergue GM, Holbrook JD, Ferraiuolo
L (2020) Applications of machine learning to diagnosis and
treatment of neurodegenerative diseases. Nat Rev Neurol 16,
440-456.

[6] Goenka N, Tiwari S (2021) Deep learning for Alzheimer
prediction using brain biomarkers. Artif Intell Rev 54, 4827-
4871.

[7] Bogdanovic B, Eftimov T, Simjanoska M (2022) In-depth
insights into Alzheimer’s disease by using explainable
machine learning approach. Sci Rep 12, 6508.

[8] Kumar S, Oh I, Schindler S, Lai AM, Payne PRO, Gupta
A (2021) Machine learning for modeling the progression of
Alzheimer disease dementia using clinical data: A system-
atic literature review. JAMIA Open 4, ooab052.

[9] Jo T, Nho K, Saykin AJ (2019) Deep learning in Alzheimer’s
disease: Diagnostic classification and prognostic prediction
using neuroimaging data. Front Aging Neurosci 11, 220.

[10] Geda YE, Roberts RO, Mielke MM, Knopman DS, Chris-
tianson TJH, Pankratz VS, Boeve BF, Sochor O, Tangalos
EG, Petersen RC, Rocca WA (2014) Baseline neuropsy-
chiatric symptoms and the risk of incident mild cognitive
impairment: A population-based study. Am J Psychiatry
171, 572-581.

[11] Krell-Roesch J, Rakusa M, Syrjanen JA, van Harten AC,
Lowe VJ, Jack CR Jr, Kremers WK, Knopman DS, Stokin
GB, Petersen RC, Vassilaki M, Geda YE (2022) Associa-
tion between CSF biomarkers of Alzheimer’s disease and
neuropsychiatric symptoms: Mayo Clinic Study of Aging.
Alzheimers Dement. doi: 10.1002/alz.12557.

[12] Pink A, Krell-Roesch J, Syrjanen JA, Vassilaki M, Lowe
VJ, Vemuri P, Stokin GB, Christianson TJ, Kremers WK,
Jack CR, Knopman DS, Petersen RC, Geda YE (2022) A
longitudinal investigation of A�, anxiety, depression, and
mild cognitive impairment. Alzheimers Dement 18, 1824-
1831.

[13] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma
S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC,
Fei-Fei L (2015) ImageNet large scale visual recognition
challenge. arXiv, arXiv:1409.0575.

[14] He K, Zhang X, Ren S, Sun J (2015) Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet
classification. arXiv, arXiv:1502.01852.

[15] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van
den Driessche G, Schrittwieser J, Antonoglou I, Panneer-
shelvam V, Lanctot M, Dieleman S, Grewe D, Nham
J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M,
Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering
the game of Go with deep neural networks and tree search.
Nature 529, 484-489.

[16] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J,
Bellemare MG, Graves A, Riedmiller M, Fidjeland AK,
Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I,
King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015)
Human-level control through deep reinforcement learning.
Nature 518, 529-533.

[17] Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM,
Thrun S (2017) Dermatologist-level classification of skin
cancer with deep neural networks. Nature 542, 115-118.

[18] Buetti-Dinh A, Galli V, Bellenberg S, Ilie O, Herold M,
Christel S, Boretska M, Pivkin IV, Wilmes P, Sand W,
Vera M, Dopson M (2019) Deep neural networks outper-
form human expert’s capacity in characterizing bioleaching
bacterial biofilm composition. Biotechnol Rep 22, e00321.

[19] Shah J, Gao F, Li B, Ghisays V, Luo J, Chen Y, Lee W,
Zhou Y, Benzinger TLS, Reiman EM, Chen K, Su Y, Wu T
(2022) Deep residual inception encoder-decoder network
for amyloid PET harmonization. Alzheimers Dement 18,
2448-2457.

[20] Armanious K, Jiang C, Abdulatif S, Küstner T, Gatidis
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J, Reischies FM, Schröder J, Wagner M, Rienhoff O, Wolf
S, Bauer C, Schuchhardt J, Heuser I, Rüther E, Henn F,
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